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Abstract

An approximating algorithm for computing equivalent degrees of freedom of the modified Allan
variance and its square root, the modified Allan deviation (MVAR and MDEY), and the time variance
and time deviation (TVAR and TDEV) is presented, along with an algorithm for approximating
the inverse chi-squared distribution. These two algorithms allow relatively simple computations of
confidence intervals on MDEV and TDEYV, the latter currently used as a standard in the telecom-
munications industry. These algorithins enable users to present variance results with confidence
intervals corresponding to any useful probability for most data lengths and noise types.

1 INTRODUCTION

We present here a simplified algorithm for calculating approximate confidence intervals on the
modified Allan deviation, MDEY, and therefore also on the related time deviation TDEV. The
algorithm has two parts: the first gives approximate equivalent degrees of freedom, edf, for
the fully overlapped estimate of MVAR; the second gives approximate values of the inverse
chi-squared distribution. An algorithm for estimating edf for the other measure commonly used
in time and frequency metrology, the original Allan deviation, was published previously.[l]

Confidence intervals are defined in terms of edf and the chi-squared distribution as follows.
If s denotes the usual sample variance of n independent and identically distributed Gaussian
measurements (white noise) with actual variance o2, then

*Contributions of the U.S. government are not subject to copyright.
#The work of this author was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration
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has a chi-squared distribution with v =n —1 degrees of freedom.?! In the classical situatiop,;
the number of degrees of freedom associated with ¢? is an integer value depending only on the §
number of measurements, and exact confidence limits on the measurement variance are easily |
calculated using percentiles of the appropriate chi-squared distribution. For example, Figure {
shows the chi-squared distribution with 10 degrees of freedom, and also depicts the percentileg
a and b that are needed to calculate uncertainty bounds on o? at the 0.95 confidence level frop
a particular s? based on 11 Gaussian measurements.

A 95% confidence interval is obtained as follows. First, we find values a and b such that the
probability is 0.95 that U of Eq. (1) lies between a and b. This condition is equivalent to each
of the following inequalities:

7 < %; vy

v v
—.sf<at<c =48
b a

The lower and upper bounds in the final inequality are confidence limits on the unknown
variance o2. Note that the confidence factors v/b and v/e needed in the calculations are
independent of the actual data. They give the magnitude of the confidence interval as a
function of the number of points used to compute the variance. Hence, we can compute these
confidence factors for various data lengths. The factors 1 —~»/b and v/a—1 give the multipliers
for the magnitude of the lower and upper confidence intervals on the variances, respectively.
For deviations such as TDEYV, the corresponding multipliers are 1— /v/b and {/v/a —1.

Since the common time and frequency stability measures (AVAR, MVAR, TVAR) are calculated
from data arising from non-white noise processes, the confidence limit procedure outlined above
is an approximate methodB! that is based on approximating the distribution of U in Eq. (1)
with the chi-squared distribution with degrees of freedom

_ 2

" Var (s2)’ @

1 4

where o? represents the appropriate stability measure, TVAR, for example, s* represents its
corresponding estimator, and Var (s?) is the variance of the s? estimator. The quantity v, which
now depends on the noise type, is called the equivalent degrees of freedom, edf, since it need
not be integer-valued.

In this contribution we have combined a previously published edf approximation algorithm!4l
with an algorithm for approximating the inverse of the chi-squared distribution function. The
latter algorithm is based on work of Barnes used in deriving tables in [5], but not published,
and formulas from Abramowitz and Stegun (A&S).!§1 Previously, tables for confidence of
TDEV and MDEV were published in [7]. These are exact computations for edf and the
associated confidence intervals for various cases in computing TDEV and MDEYV. We compar¢

216



)
2

i

“-
sy

values approximating the exact edf and confidence factors in tables in [7], finding a worst
case disagreement of —9.7% for the edf and +10.8% for the confidence intervals. Most cases
are much better than that. The confidence intervals are pessimistic if they are too large and
optimistic if they are too small. In many cases here, pessimism is better than optimism, since
the true value of the variance is more certain to lie in a larger range than a smaller. For the
comparison with the published tables the confidence intervals are no smaller than —-3.3%.

2 APPROXIMATION FOR EQUIVALENT DEGRESS OF
FREEDOM
This version of the formula is restricted to the case of the usual fully overlapped estimator of
MVAR or TVAR ([8], Eq. (12); [4], Eq. (6), m; = 1).
Let '

N = number of time residuals,

m = averaging time / sample period,

M = N —3m + 1, the number of terms summed in the estimate,

g=M/m.

Restrictions:

N > 16,
m < N/5.

The approximate edf is given by

_ _ oog
edf—l_al/qi (4)

where a; and q; are given in Table I as functions of m and the noise type.

Table I. Coeflicients for Approximate edf Calculation

m=1 m=2 m>2

Noise %Ee aQ a a a a a;
te

Flicker PM 0576 0 0973 0 1.003 0.602
White FM 0667 0 1010 0 0968 0571
Flicker FM 0811 0 1.027 0 0947 0.416
Random-Walk FM 1000 0 0866 0 0.768 0.411

Under the assumptions given above, a maximum error of 11.1% in this approximation has been
observed. Usually, it is much less.
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Let U be a chi-squared random variable with v degrees of freedom (v can be nonintegral)
Let 0 < p < 1. Define = = z(p,v) as the 100p percentile of the distribution of U; thus p is the
probability that U <z. The algorithm given below computes an approximation to z.

Restrictions:
v>1,
0.005 < p < 0.995.

Maximum observed error with these restrictions: 3%

if p< 1 and v <10 then

! Method: truncate power series in A&S [6] 26.4.6, invert by iteration
a=v/2
! Calculation of G =T (1 +a) (A&S 6.1.35)
constants: ¢; = —0.5748646, c; = 0.9512363, c3 = —0.6998588, c4 = 0.4245549, c5 =

—0.1010678
n = integer part of ¢
y=a—n

G=1+ay+ay®+cp® +cyt + st
fork=1ton ! Do nothingif n=0

G=G(y+k)
next k

A=9G

u=0

fori=1to 7

u
g = 1+a+1(1+ai2(1+a:3))
_ (Aeg)l/a
u = (&=
9
next i
z=2u

else

! Method: A&S 26.4.17
p1=min(p,1-p)
! Calculation of X = inverse of normal distribution at 1 -p, (A&S 26.2.22)

constants: ao = 2.30753, a; = 0.27601, b; = 0.99229, b, = 0.04481
t=y-2Inp
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X =t— (a0 +at)/ (14 bt + bst?)
s=signum(p—1) ! signum(u)=1ifu>0, -1if u<0,0if u=0

b=2/(9v)
:a:=u(1--b+.sX\/l;)a

4 A NUMERICAL EXAMPLE

Before giving tabular results, we show by example how they are used and how they are calculated
by the algorithms given above. Assume the situation of the last line of Table II below: white
PM noise, 1,025 time residuals, and averaging time = 128 sample periods. Suppose that an
MDEYV value s is computed by a fully overlapped estimate. The tabulated 95% lower and upper
factors are 33.89% and 104.1%. Therefore, a 95% confidence interval for the true MDEYV is
0.661 s to 2.041 s.

The tabulated edf and confidence factors are obtained as follows: N =1,025, m = 128, M =
1025-3x128+1 = 642 (the number of summands in the estimate), ¢ = M/m =5.0156, oy =
1.225, ay = 0.589 from Table I, edf = 6.9617 from Eq. (4). For 95% confidence we need to
compute the 2.5% and 97.5% chi-squared levels. The inverse chi-squared algorithm, with v =
6.9617 and p = 0.025, gives = = 1.6720 as the 2.5% level, denoted by a in Eq. (2). Similarly,
the 97.5% level is 15.928, denoted by b. The computed confidence factors are 1— /v/b =
0.3389, /v/a— 1 = 1.0405. (Note that the values in Table II were computed from values of a,
and a; having more significant digits than the ones given in Table L.)

5 RESULTS

The data in the tables are the results for white PM with fully overlapped estimates. Table II
gives the approximate edf and confidence factors. Table III gives the percentage errors from
the exact values as found in [7]. The errors for white PM are the largest of the various noise

types.
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Table II. Approximate edf and Confidence Factors
Noise Type: White PM
edf lower 68% upper 68% lower 95% upper 95%

N m
17 1 7.714 17.74 39.14 32.79 94.61
17 2 5610 19.67 50.41 136.24 128.7
33 1 1594 13.65 23.38 25.52 52.42
4 33 2 13.09 14.71 26.67 27.40 60.97
j 33 4 7543 17.87 39.82 33.03 96.58
§ 65 1 3240 10.29 14.96 19.46 31.99
B 65 2 28.05 10.91 16.33 20.60 35.19
% 65 4 17.29 13.23 22.17 24.78 49.37
3 65 8 T7.241 18.12 41.10 3347 100.3
£ 129 1 6531 7.622 9.916 14.58 20.63
Eo 129 2 57.97 8.030 10.62 15.33 22.17
g 129 4 3686 9.746 13.84 18.48 29.42
4 129 8 1698 13.33 22.43 24.94 50.03
b 129 16 7.091 18.24 41.78 33.69 102.3
] 257 1 1311 5.579 6.715 10.76 13.74
b 257 2 1178 5.857 7.123 11.28 14.60
% 257 4 76.04 7.128 9.095 13.66 18.84
f 257 8 36.55 9.780 13.91 18.54 29.58
% 257 16 16.83 13.37 22.56 25.02 50.36
257 32 7.016 18.31 42,13 33.80 103.3
g 513 1 2628 4.045 4.610 7.856 9.332
: 513 2 2375 4.241 4.867 8.229 9.864
? 513 4 1544 5.177 6.141 10.00 12.53
513 8 75.73 7.141 9.116 13.68 18.89
v 513 16 36.40 9.798 13.95 18.57 29.66
2 513 32 16.75 13.40 22.63 25.07 50.53
513 64 6.978 18.34 42.30 33.86 103.8
1025 1 526.1 2.913 3.195 5.685 6.421
1025 2 4769 3.052 3.363 5.954 6.766
1025 4 3111 3.737 4.214 7.267 8.513
1025 8 154.1 5.182 6.148 10.01 12.54
1025 16 75.58 7.148 9.126 13.69 18.91
1025 32 36.32 9.806 13.97 18.59 29.70
1025 64 16.71 13.41 22.67 25.09 50.62
1025 128 6.959 18.36 42.39 33.89 104.1
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Table III. Percentage Error: 100 (Approzimate — Correct) /[Correct
Noise Type: White PM

| N m edf lower 68% upper 68% lower 95% upper 95%
, 17 1 -34 0.2 2.2 1.0 3.2
i 17 2 9.7 2.2 84 3.0 10.8
33 1 -16 -0.1 0.2 0.5 14
L 33 2 -42 0.8 2.0 14 3.7
33 4 34 -2.1 -2.9 -1.2 -3.1
65 1 —08 -0.3 -0.2 0.2 0.5
i 65 2 -20 0.1 05 0.6 1.3
t: 65 4 39 -2.2 -3.3 -15 -2.6
it 65 8 -36 0.3 24 1.0 34
129 1 -04 -0.4 ~0.4 0.0 0.1
§ 120 2 -10 -0.2 ~0.1 0.3 0.5
3 129 4 40 -23 -3.0 -17 -2.6
k. 129 8 =29 04 11 1.0 2.3
129 16 -53 0.9 3.9 1.6 5.2
: 257 1 =02 -0.5 -0.5 -0.1 -0.1
| 257 2 -05 -0.4 -0.3 0.0 0.1
i 257 4 41 -24 -2.9 -19 —25
" 257 8 27 0.5 1.0 1.0 1.7
4 257 16 —4.6 1.1 2.3 1.6 3.6
- 27 32 -58 1.0 43 1.8 5.7
3 513 1 -01 -0.5 -0.5 ~0.1 -0.1
513 2 —0.2 -0.5 -0.5 0.0 0.0
;‘ 513 4 41 —24 —2.8 -1.9 —2.4
8 513 8 -26 0.6 0.9 1.0 14
g 513 16 —44 1.2 2.0 1.7 2.8
| 4 513 32 -50 1.3 26 1.8 4.0
] 513 64 -—59 1.0 44 1.8 5.8
§ 1025 1 0.1 -0.5 -0.5 -0.1 -0.1
¥ 1025 2 =01 -0.5 -0.5 -0.1 -0.1
1025 4 42 -2.5 -2.7 -2.0 -24
, 1025 8 —26 0.6 0.8 1.0 1.3
¥ 1025 16 —4.3 1.3 1.9 1.7 2.5
- 1025 32 —4.8 14 2.2 1.8 3.1
| 1025 64 -52 1.3 2.6 1.9 4.1
i 1025 128 -59 1.0 44 1.8 5.8
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95% Confidence .

Each Area = 0.025

Figure 1 Finding the 95% confidence limits under the chi-
squared distribution with 10 degrees of freedom.
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